Estimation Overview
Consider a typical stochastic frontier model,
\[ \begin{aligned} y_i = f(x_i; \beta) + v_i - u_i(z_i), \end{aligned}\]
where $v_i$ and $u_i(z_i) >0$ are both stochastic.
SFrontiers
provides utilities to estimate the model using the maximum likelihood approach.
1. Specify the model using sfmodel_spec()
- a cross-sectional (the default) or a panel data (require tags) model
- a production or a cost type of model
- distribution assumptions on $u_i$
- names of variables for $y_i$, $x_i$, and $z_i$ (if any)
2. (optional) Provide initial values using sfmodel_init()
- initial values for the maximum likelihood estimation
- a full list or a partial list for some of the equations
3. (optional) Provide parameters for numerical maximization and other controls using sfmodel_opt()
- algorithms (e.g.,
Nelder-Mead
,BFGS
,Newton
, etc.) - maximum iteration number
- convergence criterion
- information to print on screen
- whether calculating inefficiency index, marginal effect, etc.
4. Start the Numerical Maximization Process using sfmodel_fit()
- name of the dataset
5. Conduct Post-Estimation Analysis
- hypothesis testing
- the inefficiency index of Jondrow et al. (1982) or the efficiency index of Battese and Coelli (1988)
- marginal effect of the inefficiency determinants