Estimation Overview

Consider a typical stochastic frontier model,

\[ \begin{aligned} y_i = f(x_i; \beta) + v_i - u_i(z_i), \end{aligned}\]

where $v_i$ and $u_i(z_i) >0$ are both stochastic.

SFrontiers provides utilities to estimate the model using the maximum likelihood approach.

1. Specify the model using sfmodel_spec()
  • a cross-sectional (the default) or a panel data (require tags) model
  • a production or a cost type of model
  • distribution assumptions on $u_i$
  • names of variables for $y_i$, $x_i$, and $z_i$ (if any)
2. (optional) Provide initial values using sfmodel_init()
  • initial values for the maximum likelihood estimation
  • a full list or a partial list for some of the equations
3. (optional) Provide parameters for numerical maximization and other controls using sfmodel_opt()
  • algorithms (e.g., Nelder-Mead, BFGS, Newton, etc.)
  • maximum iteration number
  • convergence criterion
  • information to print on screen
  • whether calculating inefficiency index, marginal effect, etc.
4. Start the Numerical Maximization Process using sfmodel_fit()
  • name of the dataset
5. Conduct Post-Estimation Analysis
  • hypothesis testing
  • the inefficiency index of Jondrow et al. (1982) or the efficiency index of Battese and Coelli (1988)
  • marginal effect of the inefficiency determinants